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Abstract An account of recent developments in the study
of molecular dynamics with the inclusion of quantum ex-
change effects is presented. Approaches for quantum dynam-
ical calculations are reviewed and the determination of time
correlation functions is a special point of focus. It is shown
that the exact basis set techniques can be used to perform
highly accurate calculations but are restricted to relatively
small systems since computational cost scales exponentially
with system size. Alternate formulations can be introduced
to circumvent this problem, and semi-classical initial value
representation and Feynman path centroid approaches are
considered. It is then showed that from a practical point of
view, for complex bosonic systems such as doped helium
clusters, Quantum Monte Carlo techniques can currently be
used for the calculation of quantities of experimental interest.
A perspective on future prospects for the calculation of real
time correlation functions of bosonic nano-scale systems is
presented.

Keywords Quantum Molecular dynamics · Path Integral
Monte Carlo · Bose–Einstein centroid dynamics ·
Semiclassical dynamics

1 Introduction

Time-correlation functions play a central role in statistical
mechanics and allow the calculation of transport coefficients,
chemical reaction rates and molecular spectra [1–3]. The di-
rect calculation of time correlation functions for quantum
mechanical systems is one of the great challenges of theo-
retical chemistry [4,5]. The task is complicated when one
wishes to account for quantum statistical effects present in
systems of identical bosons. Various theoretical approaches
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have been discussed to tackle difficulties with chosen illus-
trative applications to dope helium clusters.

1.1 Motivation: quantum clusters and droplets

Time-correlation functions are particularly interesting in the
context of the dynamics of quantum clusters and droplets
since they can be used to explain the behaviour of spectro-
scopic parameters. A dramatic example is the spectroscopic
observation of free molecular rotation in a doped helium
nanodroplet and it was proposed that this phenomenon was a
microscopic manifestation of superfluidity [6–8]. The effec-
tive moment of inertia of the rotating dopant appears to be
renormalized in these experiments and this, in turn, suggests
that part of the helium environment could be dragged by the
rotating molecule. The questions raised by these experiments
have motivated a growing number of theoretical investiga-
tions [9–12]. Note that a quantity that is typically used to
characterize rotational spectra is the rotational constant, B,
which is inversely proportional to the moment of inertia. Cal-
culations of B have been discussed.

In order to understand the microscopic origins of super-
fluidity, exciting experimental studies have focused on the
size (number N of helium solvent atoms) evolution of the
spectroscopic properties of doped-helium clusters. A key
experimental study was completed for the HeN –OCS system
[13]. An important observation of this work was that for clus-
ter sizes ranging from N = 1 − 8 the value of the rotational
constant, B, undershoots the expected value for a nanodroplet
(in the droplet limit, N can be several thousands). With this
observation, it was proposed that a mechanism must exists
by which the value of the rotational constant increases again.
It was suggested that the observation of this ‘turnaround’ in
the rotational constant value versus cluster size could be the
sign of the onset of superfluidity. This experiment motivated
theoretical studies and Quantum Monte Carlo simulations
have been used to explain the turnaround behaviour [14,15].
Such theoretical investigations will be discussed later where
time-correlation functions are used to extract spectroscopic
parameters.
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1.2 Background: time-correlation functions

Before describing the various theoretical approaches, let us
first define the correlation function, the main quantity of inter-
est. For a system with Hamiltonian, Ĥ , the canonical real time
correlation function for two physical quantities Â and B̂ is
defined as,

〈 Â(t)B̂(0)〉 = 1

Z
Tr

{
e−β Ĥ ei t Ĥ/h̄ Â e−i t Ĥ/h̄ B̂

}
, (1)

where Z = Tr e−β Ĥ is the partition function andβ = 1/kB T .
Depending on the choice of operators Â and B̂, the above cor-
relation function can be used to obtain transport coefficients
or various kinds of spectra. For instance, if operators Â and B̂
are both set to be orientation dipole operators of a rigid linear
molecule, the Fourier transform of the correlation function
will yield the rotational spectrum. It is in practice very diffi-
cult to calculate such real time correlation function directly
for complex systems and we present here an account of some
of the theoretical approaches that can be used for this pur-
pose. We focus on methods that are currently pratical and
also on emerging ideas.

The rest of this article is organized as follows: differ-
ent approaches for the study of quantum dynamics are first
described in general and specific applications of one of the
approaches are then presented in the context of doped helium
clusters; a conclusion and outlook are finally presented.

2 Approaches for quantum dynamics

Several approaches exist for the treatment of quantum dynam-
ics in molecular systems and we chose to present those that
will constitute the tools of choice for the account of both (1)
dynamical and (2) quantum exchange effects in doped boson-
ic clusters. The following discussion is in the context of the
Born-Oppenheimer approximation and that the existence of
an appropriate potential energy surface (PES) for the system
of interest is assumed.

2.1 Exact basis set approaches

In principle, given the Hamiltonian of molecular system, one
simply needs to select an appropriate set of basis functions,
construct the matrix representation of the Hamiltonian, and
perform numerical matrix diagonalization in order to obtain
the energy levels and wavefunctions. This is, however, only
possible for relatively small systems. When the number of
degrees of freedom increases, a very attractive alternative to
explicit diagonalization is the use of iterative methods such
as the Lanczos recursion algorithm [16,17]. This type of ap-
proach is very useful in studies of doped helium clusters since
exact calculations can be used to assess the quality of model,
or ab initio, potential energy surfaces via the comparison be-
tween calculated and experimental transition frequencies. A
study of this kind was performed for the He–N2O system

[18] where an iterative calculation of the bound states of the
complex was performed. This work allowed to establish the
quality of a newly proposed PES for He–N2O.

When two or more identical atoms are present in a floppy
weakly bound cluster, the effects of quantum statistics have
to be taken into account in order to calculate physical eigen-
states. For systems of identical atoms obeying Bose–Einstein
statistics, the total wavefunction of the system has to be totally
symmetric upon the exchange of two (or more) identical bo-
sons. In the context of an iterative method such as the Lanc-
zos approach, it is possible to directly calculate states of a
given symmetry using the symmetry-adapted Lanczos (SAL)
algorithm [19,20]. This approach has been used to calculate
highly accurate excited energy levels of floppy boson trimers
of argon and neon [21]. The results of this work have been
used as a benchmark in a recent comprehensive study of the
neon trimer [22]. The approach of Ref. [21] can also be used
to study mixed systems such as small doped helium clusters
as in recent work where a cluster composed of two helium
atoms and a hydrogen anion was studied [23]. The exten-
sion of this work to include a molecular as opposed to an
atomic dopant, with two solvating helium atoms, is a current
challenge in the field.

We restricted our discussion of exact basis set approaches
to time-independent techniques where the goal is to obtain
energy levels and wavefunctions. With these quantities, it
is possible to calculate dynamical properties such as time-
correlation functions as discussed later in the context of a
comparison to Quantum Monte Carlo methods.

2.2 Semi-classical initial value representation schemes

We briefly mention here a time-dependent approach that is
approximate in nature but retains many of the essential fea-
tures of quantum mechanics. The approach is a promising
tool for the study of quantum dynamics in doped bosonic
clusters but has not yet been used for such problems. It is
based on a semi-classical (SC) approximation to the propa-
gator [24] but uses an initial value representation (IVR) that
allows the root-search problem of traditional SC techniques
to be avoided [25–27]. We refer the reader to a recent review
for an account of the topic [28].

Using the popular Herman–Kluk (HK), or coherent state,
version of the semiclassical initial value representation (HK-
SC-IVR) [29], the propagator, for a system of N particles in
three dimensions, can be written as,

e−i Ĥ t/h̄ = (2π h̄)−3N
∫ ∫

dpi dqi Rpi qi t

×ei Spi qi t /h̄ |gpt qt 〉〈gpi qi | , (2)

where qi and pi are the Cartesian position and momentum
vectors, respectively. The subscript i indicates that these cor-
respond to initial (t = 0) positions and momenta while the
subscript t denotes time. The ket |gpt qt 〉 represents a coher-
ent state at time t [29] and Spi qi t is the classical action at
time t given initial conditions (pi , qi ). The quantity Rpi qi t
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is the so-called HK prefactor [29]. This expression for the
propagator can then be used to calculate correlation func-
tions such as, for instance, the auto-correlation function of
an initial wave-packet |φ〉,
C(t) = 〈φ|e−i Ĥ t/h̄ |φ〉 . (3)

The Fourier transform of the above correlation function yields
the power spectrum,

I (w) = 1

2π

∞∫

−∞
dt eiωt/h̄C(t)

=
∑

n

|〈n|φ〉|2δ(ω − En), (4)

where En and |n〉 are the eigensolutions of the Schrödinger
equation, Ĥ |n〉 = En|n〉. The “peaks” of the power spectrum,
therefore, allow the extraction of the energy levels of a quan-
tum systems. An attractive feature of the SC-IVR is that an
approximate quantum mechanical correlation function can be
obtained by combining the results of a large number of clas-
sical trajectories via Monte Carlo evaluation of the integral
appearing in Eq. (2). Several methodological developments
of classical molecular dynamics can then be reused in the
context of SC dynamics calculations.

In the context of doped bosonic clusters, two essential fea-
tures have to be considered: (1) the incluson of Bose–Einstein
statistics and (2) the treatment of rigid dopants while keep-
ing a simple Cartesian formulation. The inclusion of quantum
statistics in SC-IVR methodology has recently been achieved
in applications to quantum fluids [30,31]. Methods for the
treatment of rigid bonds while maintaining a Cartesian coor-
dinate system have also recently been developed for the HK-
SC-IVR [32,33]. A combination of the above two features
has not been accomplished to date and would open the door
to the direct calculation of real time correlation functions for
doped bosonic clusters.

2.3 Bose–Einstein centroid dynamics

Another promising avenue for the calculation of real time
correlation functions of complex systems is the use of cen-
troid dynamics methods [34–37]. In these approaches a quan-
tum system is mapped onto a classical-like phase-space that
corresponds to the positions and momenta of the centroid
(center-of-mass) of Feynman paths [38]. The original for-
mulation of centroid dynamics was derived for Boltzmann
statistics and therefore, did not account for exchange effects
that are important in our description of doped bosonic clus-
ters. The concepts were extended to the case of Bose–Einstein
and Fermi-Dirac statistics [39,40] and the formalism was
further developed using path integral techniques [41–43],
and an operator formulation [44–47]. An important result of
the operator formulation of Bose–Einstein centroid dynamics
was the realization that correlation functions involving single
particle operators correspond to the double-Kubo transform

of regular quantum mechanical correlation functions,

C(t) = 1

β2

β∫

0

dµ

β∫

0

dν
〈
T̂ B̂(−iν) Â(t − iµ)

〉

=
∫ ∫

dpcdqc

(2π)3N

ρB
c (pc, qc)

Z
B̃c Ãc(t), (5)

for observables Â and B̂, where Â(τ ) = eiτ Ĥ Âe−iτ Ĥ , and
and T̂ is the Dyson time-ordering operator [3]

T̂ B̂(−iν) Â(t − iµ) =
{

B̂(−iν) Â(t − iµ), ν > µ

Â(t − iµ)B̂(−iν), ν < µ .
(6)

Note that Eq. (5) applies for B̂ linear in position and momen-
tum. The second line of Eq. (5) is the centroid correlation
function and has a classical-like form. It corresponds to an
ensemble average over a centroid phase space, (pc, qc). The
density function, ρB

c (pc, qc), is the centroid density, the inte-
gral of which yields the exact Bose–Einstein quantum
mechanical partition function, Z . The quantities Ãc and B̃c

are the centroid symbols corresponding to operators Â and
B̂, respectively, while Ãc(t) contains the time-dependence
(through equations of motion) of observable A in the centroid
representation. Details of the definition of centroid symbols
and their equations of motion are given in Ref. [44].

To date, advances in Bose-Einstein centroid dynamics
have been formal in nature. Efficient algorithms remain to
be developed before these ideas can be applied to doped bo-
sonic clusters and outstanding issues such as the treatment of
correlation functions of non-linear operators remain [48]. A
relationship between SC and centroid correlation functions
has been shown [49] and it will be interesting to establish such
a relationship for the Bose–Einstein case. One of the draw-
backs of practical centroid dynamics methods is the centroid
molecular dynamics (CMD) approximation for which there
is no straightforward systematic improvement. Progress has
however been made towards increasing the accuracy of CMD
through the use of SC-IVR type propagators [50]. Whether
one would need to use such techniques to describe the dynam-
ics of doped quantum clusters with centroid dynamics re-
mains an open question.

2.4 Quantum Monte Carlo simulations and connection
to experiments

The approaches described above aim at obtaining eigenstates
or real-time correlation functions directly. We now describe
Quantum Monte Carlo techniques that are applicable to much
larger systems but with the difference that correlation func-
tions are calculated in imaginary time rather than in real
time. Sample results of path integral Monte Carlo (PIMC)
simulations for the calculation of imaginary time correla-
tion functions have been chosen to illustrate how imaginary
time correlation functions can be used to extract the spectro-
scopic parameters of doped quantum clusters. These results
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Fig. 1 Feynman Paths for N helium atoms surrounding an N2O molecular impurity for a N = 5, and b N = 6

are based on the simulations presented in Refs. [51] and [52].
We will not describe the approach in details here but will
rather report the important aspects pertaining to rotational
dynamics. The reader should consult Refs. [51–53] and ref-
erences therein for details of the PIMC formalism and meth-
odology pertaining to the calculation of rotational correlation
functions in doped clusters.

2.4.1 Structural properties

Before presenting calculated correlation functions and their
connection to experiments, we illustrate below the Path Inte-
gral formalism in the context of a doped helium cluster. In the
Path Integral picture, each quantum particle is mapped onto a
classical ring polymer, and the quantum statistical properties
of the system correspond to the properties of the isomor-
phic classical polymer system [54] (also see Ref. [55] for a
review of PIMC techniques applied to Helium). Properties
can be calculated via Monte Carlo integration as a weighted
sum over a large number of path (or polymer) configurations.

Helium paths are depicted in Fig. 1 for the HeN –N2O
system. The case of five helium atoms is shown in Fig. 1a. A
different colour is assigned to each atom for clarity and the
paths a traced in the frame of the N2O molecular impurity.
The paths of the five helium atoms form a ring around the axis
of the N2O molecule. When six helium atoms are present, as
shown in Fig. 1b, five helium still form a ring around the
molecular axis but the sixth atom goes to the oxygen end of
the N2O molecule. This is due to the nature of the interactions
between helium atoms and the N2O molecule [18].

The paths shown in Fig. 1 are just snapshots of the numer-
ous configurations generated during a Monte Carlo simu-
lation. These configurations can be averaged to obtain the
helium density around the N2O molecule. Such densities have

been reported in Ref. [52] as contour plots. We decided to
present the same information in Fig. 2 as iso-surfaces in order
to provide a three-dimensional perspective. The case of five
helium atoms is shown in Fig. 2a where a ring, or donut,
arrangement is clearly seen. When the number of helium
atoms increases to N = 8 as shown in Fig. 2b, a helium
cap appears at the oxygen end of the N2O molecule. The
N2O molecule appears completely surrounded by helium for
N = 10 as presented in Fig. 2c. It will be shown below
that these observations are consistant with experimentally

Fig. 2 Helium densities for N helium atoms surrounding an N2O
molecular impurity for a N = 5, b N = 8, and c N = 10
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determined structures [56] and can be associated with the
rotational dynamics of the doped clusters.

2.4.2 Dynamical properties

Before presenting the analysis of dynamical properties based
on imaginary time-correlation functions, we wish to provide
an example of a real time correlation function for one helium
atom attached to a molecular impurity. Such results are read-
ily obtained from exact basis set calculations of the type pre-
sented in the previous section. The quantity of interest is
the dipole–dipole correlation function that is obtained from
Eq. (1) by replacing the operators Â and B̂ by the unit vec-
tor n, which corresponds to the orientation of the molecular
impurity with respect to the space-fixed frame. The follow-
ing quantity is proportional to the dipole–dipole correlation
function,

〈n̂(t) · n̂(0)〉 = 1

Z
Tr

{
e−β Ĥ ei Ĥ t/h̄ n̂ e−i Ĥ t/h̄ · n̂

}
. (7)

We show in Fig. 3 the dipole–diople correlation function for
the He–OCS complex at a temperature of 0.37 K.

The correlation function, which is composed of contribu-
tions from transitions between the eigenstates of the system,
clearly contains more than one frequency. This is because
at finite temperature, a large number of initial ro-vibrational
states of the complex can be populated and transitions to more
than one final state can be achieved via dipole coupling. If
the real time correlation function is known, the rotational
spectrum can be obtained from its Fourier transform in a
straightforward way.

Because of the oscillatory nature of the complex trace, the
Path Integral Monte Carlo evaluation of real time correlation
functions is not practical and we use the imaginary time ver-
sion instead. In terms of imaginary time, τ , Eq. (7) becomes,

〈n̂(τ ) · n̂(0)〉 = 1

Z
Tr

{
e−β Ĥ eτ Ĥ n̂ e−τ Ĥ · n̂

}
. (8)

Fig. 3 Real-time orientational correlation function for one helium atom
attached to a rigid OCS molecule

This quantity can be calculated for various cluster sizes and
is shown in Fig. 4 for the He–OCS dimer. First note how
this correlation function differs from its real time counterpart
shown in Fig. 3. The signal is now periodic in imaginary time
and is composed of a sum of several exponential contribu-
tions. The conversion from imaginary to real time of the cor-
relation function involves an inverse Laplace transform and
is an ill-posed problem. This means that the rotational spec-
trum cannot be easily obtained. This dimer calculation was
part of the benchmarking of the PIMC approach via a com-
parison with exact basis set results. The agreement between
the basis set and PIMC results was found to be excellent
[51]. Another feature of Fig. 4 is the inclusion of the free
OCS rotor result for which the correlation function can be
calculated analytically. Observe how the free OCS correla-
tion function lies below the He–OCS one. This difference is
due to the renormalization of the OCS moment of inertia due
to the interaction with the Helium atom. Finally, the fact that
the higher temperature correlation function of the dimer lies
above the low temperature one is due to the contribution of
a larger number of populated excited states.

We saw in Fig. 4 that the moment of inertia of an impurity
molecule can be renormalized upon adding a helium atom.
As helium atoms are added to the cluster, the moment of
inertia will further be modified. Computer simulation studies
of HeN –OCS clusters [14,15,51] have been used to provide
an explanation for the size dependence of the rotational con-
stant as a function of cluster size. It was shown that if quan-
tum exchange effects were neglected, no turnaround would
be observed in the size dependence of the rotational constant
[51]. In this work, in order to circumvent the inverse Laplace
transform difficulties, the rotational constants were extracted
from the correlation functions by fitting them to a free rotor
model. Another approach that could have been used is the
analytic continution of the imaginary time-correlation func-
tion using maximum entropy methods [57]. Such techniques
have been used in the past to analyse PIMC data for various
properties [58–63].

A study on HeN –N2O clusters allowed the first experi-
mental observation of a turnaround in the size dependence of
the rotational constant [56]. These experimental results are
presented Fig. 5 along with two types of simulation results.
It is clear from the figure that at around N = 8, there is a
turnaround in the behaviour of the experimental rotational
constant that is indicative of some decoupling mechanism.
Following this experimental work, a theoretical study was
completed in order to resolve some outstanding questions. It
was, for instance, proposed that the turnaround in the behav-
iour of the rotational constant was due to exchange effects
[56]. By combining ground state Quantum Monte Carlo and
Boltzmann PIMC calculations, it was possible to directly
establish that exchange effects were indeed responsible for
the turnaround [52]. The simulation results are both shown in
Fig. 5. The ground state results agree very well with experi-
ment for all cluster sizes while the Boltzmann PIMC results
(where exchange is neglected) start departing from the exper-
imental ones at cluster sizes greater than 8, the point of the
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Fig. 4 Imaginary time-correlation function for one helium atom attached to a rigid OCS molecule. PIMC (circles) and exact (solid line) results
are presented along with the exact free rotor correlation function (dashed line) for a temperature of 0.37 K. PIMC results (triangles) are also
presented for a temperature of 3.0 K. The imaginary time axis of the 3.0 K results has been scaled to make the correlation function comparable to
the 0.37 K ones

Fig. 5 Evolution of the rotational constant B as function of cluster size N . Boltzmann PIMC (diamonds), ground state (solid line) and experimetal
(filled circles) results are presented. The nanodroplet limit is indicated by a dotted line and a filled triangle

turnaround. It can then be suggested that exchange effects are
essential in order to capture the turnaround and decoupling.
By inspecting the isosurfaces presented earlier in Fig. 2, one
can see that for N = 10, where the decoupling is strong, the
dopant molecule is completely surrounded by helium atoms.
Such an arrangement favours exchanges between the helium
atoms.

In a very recent work, the first comparison of the effects
of Bose–Einstein and Boltzmann statistics on the size depen-
dence of the moment of inertia of rotating doped helium clus-
ters was achieved [53]. The approach was applied to CO2
doped helium clusters and it was shown that exchange effects
were important to explain the qualitative decoupling behav-
iour of the experimental spectrum. The methods described
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earlier are currently being used to investigate other systems
in a joint theory-experiment effort to provide a unified picture
for the behaviour of doped quantum clusters.

3 Conclusion and outlook

A brief account of the methods geared towards the calcula-
tion of the dynamical properties of doped bosonic clusters has
been presented. We remarked that exact basis set methods are
restricted to systems of smaller sizes but can nevertheless be
quite useful in benchmarking alternate schemes designed to
tackle bigger problems. It is clear that at present, the Quan-
tum Monte Carlo family of methods is the path of choice for
the study of the experimentally observed size dependence
of the spectroscopic signatures of doped bosonic clusters.
For the calculation of spectra, the technique is not without
problems as one has to rely on imaginary time-correlation
functions. The present discussion was restricted to correla-
tion functions and the question of the estimation of superflu-
idity in rotating clusters was omitted. This topic is discussed
in Ref. [53]. An ultimate goal in the field of quantum clusters
is to charter the molecular origins of superfludity in finite
size systems and truly bridge the gap between the cluster and
nanodroplet size regimes.

Finally, in the context of doped bosonic quantum clus-
ters, SC-IVR and Bose–Einstein centroid formulations are
emerging techniques with the promise of yielding real time
correlation functions directly. These two areas are very excit-
ing avenues for future investigations.
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